Means
Large samples

$$
\mu_{1}<\neq>\mu_{2}
$$

Proportion
Large samples

$$
p_{1}<\neq>p_{2}
$$

Conditions We have independent, We have independent, random observations random observations from two populations, from two binomial exand there are enough periments, and there observations in each are enough trials in sample that we can each experiment that use the Central Limit we can use the Central Limit Theorem.

TS

$$
\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{2_{2}^{2}}{n_{2}}}}
$$

$$
\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}}
$$

	Means - Small sample(s)
Alternatives	$\mu_{1}<\neq>\mu_{2}$
Conditions	We have independent, random observations from two normally distributed populations and the population variances are unknown.
Distribution df	$\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{\frac{s_{1}-1}{n_{1}^{2}}+\frac{\left(\frac{n_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}}}^{2}$
TS	$\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$

