STAT 269

2-Sample Testing Summary

	Means	Proportion
	Large samples	Large samples
Alternatives	$\mu_1 < \neq > \mu_2$	$p_1 < \neq > p_2$
Conditions	We have independent, random observations from two populations, and there are enough observations in each sample that we can use the Central Limit Theorem.	We have independent, random observations from two binomial ex- periments, and there are enough trials in each experiment that we can use the Cen- tral Limit Theorem.
Distribution	Z	Z
TS	$\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}$

	Means - Small sample(s)
Alternatives	$\mu_1 < \neq > \mu_2$
Conditions	We have independent, random observations from two normally distributed populations and the population variances are unknown.
Distribution	t
df	$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$
TS	$\frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$